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Damage spreading in the Ziff-Gulari-Barshad model
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The spreading of initial damage globally distributed on the system is studied in a dimer-monomer ir-
reversible reaction process (i.e., the ZGB model [Ziff, Gulari, and Barshad, Phys. Rev. Lett. 56, 2553
(1986)]) in two dimensions. It is found that the damage heals within the poisoned states but spreads
within the reactive regime. Both the frozen-chaotic.and reactive-poisoned irreversible transitions occur
at the same critical points and are of the same order. However, the order parameter critical exponents at
the second-order transition are different, suggesting that damage spreading introduces a new dynamic
critical behavior. A variant of the ZGB model (e.g., the ZGBER model), which is obtained by the addi-
tion of an Eley-Rideal reaction step, is also studied. In two dimensions, damage heals within the
poisoned state. However, in contrast to the ZGB model, within the reactive regime, a frozen-chaotic
transition is found to occur at a different critical point than the poisoning-reactive transition. At the
frozen-chaotic critical point the damage heals according to a power-law behavior, D(t) <t ™%, with
6=20.65. The order parameter critical exponent is also determined and the fact that damage spreading
introduces a new kind of dynamic critical behavior is established. Damage healing is observed in one di-
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mension for the ZGBER model.

PACS number(s): 68.35.Rh, 82.20.—w, 82.65.Jv

I. INTRODUCTION

The understanding of irreversible dynamical many-
particle systems is relevant in many fields of physics,
chemistry, biology, ecology, etc. However, studying
these systems one frequently deals with complex mecha-
nisms consisting of a vast number of elementary process-
es. Since the handling of such a large amount of mecha-
nisms imposes severe problems, the usual procedure is to
rationalize the study by analyzing such elementary steps
separately. Within this context the study of simple mod-
els for irreversible reaction processes has received much
attention. For example, the dimer-monomer reaction
model, as proposed by Ziff, Gulari, and Barshad (i.e., the
ZGB model) [1], has attracted growing attention [2-22].
The ZGB model mimics the catalytic oxidation of carbon
monoxide (e.g, 4 =CO, B,=0,, and 4B=CO0,) [23],
which proceeds according to the Langmuir-Hinshelwood
mechanism [23]:

A(g)+V— A(ad) , (1)
B,(g)+2V —2B(ad) , 2)
B(ad)+ A(ad)—2V+ AB(g) . 3)

Here V represents a vacant site on the catalyst surface
and (g) and (ad) denote the gas and adsorbed phases, re-
spectively.

The ZGB model uses a square lattice to represent the
catalytic surface. 4 and B, molecules are selected ran-
domly with relative probabilities ¥ and (1—Y), respec-
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tively, and an attempt is made to add the selected species
to the surface. If the selected species is A4, one surface
site is selected at random, and if that site is vacant, A4 is
absorbed on it [Eq. (1)]. Otherwise, if that site is occu-
pied, the trial ends and a new molecule is selected. If the
selected species is B,, a pair of nearest neighbor (NN)
sites are selected at random and the molecule is added to
them only if they are both vacant [Eq. (2)]. After each
adsorption event, the NN sites of the added molecule are
examined in order to account for the reaction given by
Eq. (3). If more than one {B(ad), A(ad)} pair is
identified, a single one is selected at random and removed
from the surface.

Interest in the ZGB model arises due to rich and com-
plex irreversible critical behavior [1-22]. In fact, in two
dimensions and for the asymptotic regime (z— ), the
system reaches a stationary state whose nature solely de-
pends on the parameter Y. For Y <Y, =0.3907
(Y=Y, =0.525) the surface becomes irreversibly
poisoned by B (A) species, while for Y, <Y<Y, a
steady state with sustained production of AB is observed.
So, just at Y. and Y,. the model exhibits irreversible or
kinetic phase transitions (IPT’s) between the reactive re-
gime and poisoned states, which are of second and first
order, respectively.

Since the ZGB model is a simplified description of the
actual catalytic reaction, a number of studies have been
performed in order to investigate the influence of relevant
additional parameters [3-7,10,11,13,16-22]. Among
others, the addition of an Eley-Rideal (namely, the
ZGBER model) reaction step,

B(ad)+ A(g)—>V+ AB(g) , (4)

has been considered by various authors [9,12].
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On the other hand, very recently, I have shown that
damage spreading introduces a different kind of dynamic
critical behavior in some irreversible reaction models
[24]. The damage spreading problem consists first in tak-
ing a steady state configuration of the system {0 “} and
to create at ¢=0, an initial damage D(0) in that
configuration (which gives a second configuration {o%}).
Then, one investigates the time evolution of both
configurations, using the same dynamics, calculating
their Haming distance or damage, defined by

N
D(== S loAD—o0)] 5)
N 2

where N is the number of sites of the system. Physically,
D (t) just measures the fraction of sites for which both
configurations are different. Starting from a small D (0)
value, D (¢) will go asymptotically to zero in the so called
frozen phase, whereas it will tend to a finite value
different from zero in the so called chaotic phase
([25-30]; for a review see [31]).

While the study of damage spreading in systems exhib-
iting reversible phase transitions has received much at-
tention [25-31], similar studies in systems undergoing ir-
reversible transitions are still in their infancy. So, the
aim of this work is to investigate the spreading of damage
in both the ZGB and the ZGBER models in order to
study frozen-chaotic transitions in irreversible reaction
systems.

II. SIMULATION METHOD
AND THEORETICAL BACKGROUND

The Monte Carlo simulation procedure for both the
ZGB and the ZGBER models has been outlined in the
Introduction. For further details see, for example, Refs.
[1-22]. The Monte Carlo time unit is defined such that
each site of the lattice is visited once, on the average.
Starting steady state configurations are obtained after
t =2X10%. Then the damage is created and its spreading
is monitored following the dynamics of both
configurations simultaneously. For this purpose, the cru-
cial idea is to apply, on the configurations {c"}, the same
sequence of random numbers in the algorithm in order to
produce the same dynamics. This procedure requires
special care because for each adsorption-reaction trial
and due to the damage, one frequently needs to use a
different amount of random numbers to follow the dy-
namics of the configurations {o”}. So, in order to keep
the synchronism, a set of random numbers {r;},
i=1,...,M, with M just enough to account for all possi-
ble situations, is generated before starting the trial.
Then, during the trial, the random numbers are used
sequentially for the same purpose, e.g., to choose the in-
coming species, to select a neighboring site, etc. Of
course, some random numbers may not be necessary, so
they are disregarded before starting a new trial.

According to the discussion above, one would then call
the dynamic behavior of the systems chaotic if D (¢) takes
a finite value for large times if D (0)—0 [25-31]. On the
contrary, the damage is healed in the frozen phase, i.e.,
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D (7)=0 for 7— oo; this means that during their respec-
tive time evolution both configurations become identical.

Note that in Eq. (5), D is defined in terms of o, i.e., a
spin variable which usually takes two values. Neverthe-
less, for the models studied in this work one has that the
sites of the lattice may be V, 4, and B when they are va-
cant, and occupied with A and B species, respectively.
So, the three contributions to D given by V-4, V-B, and
A-B are taken to be equal to unity in the evaluation of
Eq. (5).

Since one has to work with finite, although small D (0)
values, it is necessary to take the limit D (0)—0 in order
to obtain reliable results. This tedious work can be
avoided if three configurations {o*}, {0®}, and {0 €]},
such as D ,5(0)=Dpc(0)=(3)D 4-(0)=s, are considered
[31]. Then,

is a very good extrapolation to D(0)—0. We are in-
terested in the study of an initial damage globally distri-
buted on the system, in contrast to another approach
which considers an initially localized damage. Therefore,
in most cases considered in this work, the initial damage
is created changing a fraction s =0.1 of the sites at ran-
dom. However, in some particular cases clearly identified
in the text, we study the dependence of the damage on s
for smaller s values.

Simulations are performed in lattices of size L =100
(L =10000) in two (one) dimensions, respectively.
Periodic boundary conditions are assumed and results are
averaged over 100 different samples.

III. RESULTS AND DISCUSSION

A. ZGB model in two dimensions

In this model and for Y <Y,,, the initial damage can
only be created removing at random a fraction s of B
species, since the concentration of A species within the
reactive regime is almost negligible [1,2]. It is found that
for Y=Y, and Y=Y, the damage becomes quickly
healed, indicating that, as expected, the B- and A-
poisoned phases, respectively, are also frozen phases.
This behavior characterizes systems having unique
poisoned states. However, if the poisoned state is
nonunique one may observe damage spreading also
within this state as, e.g., in the case of the dimer-dimer
reaction process [32]. Within the reactive regime of the
ZGB model, i.e, for Y;, <Y <Y,., one observes that the
damage spreads and after a short transient period reaches
a stationary value, as is shown in Fig. 1. Here the time
evolution of the damage has been monitored for different
s values and also for two Y values close to the critical
points. Figure 1 also shows that the final damage is in-
dependent of the initial distance between the starting
configurations, pointing out the consistency of Eq. (6).
Figure 2 shows the dependence of the stationary value of
the damage on Y, within the reactive regime and taking
s =0.1. From Fig. 2, it follows that the critical points at
which the onset of damage spreading is found are the
same as those characteristics of the reactive-poisoning
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FIG. 1. Plots of D(t) vs t or the ZGB model obtained for two
different Y values and various s values: Y =0.52, upper curves
and Y =0.3917, lower curves. @, s =0.10; V, s =0.05; and v,
s=0.01.

transitions. Also, the frozen-chaotic transition at Y,
(Y,.) is continuous (discontinuous), respectively. In spite
of the fact that the plot of D versus Y shown in Fig. 2
resembles the dependence of the rate of 4B production
on Y [1], we have not found any direct relationship be-
tween both quantities.

Close to the continuous frozen-chaotic transient the
natural order parameter is the damage itself, which is ex-
pected to behave as

D(t—>»)<(Y—Y, )/, @)

where B is the order parameter critical exponent. Figure
3 shows a log-log plot of D versus AY=Y —Y,. and
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FIG. 2. Plot of D(t— o) vs Y for the ZGB model.
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FIG. 3. Log-log plot of D(t— ) vs AY [see Eq. (7)]. Re-
sults are obtained using lattices of side L =100. Each point is
averaged within the interval 2X10°<¢<5X 10 and over 100
different samples. The straight line with slope §=0.33+0.01
corresponds to the best fit of the data.

from the slope very close to Y., one gets f==0.12+0.02.
However, most points shown in Fig. 3 lie on a straight
line with slope f=0.3310.01, where in both cases the er-
ror bars merely reflect the statistical error. Since a small
error of measuring Y, causes quite a large error in 8, we
have employed the best available value of the critical
probability given by Y, =0.390(65)+0.000(10) [8]. In
spite of the considerable uncertainties involved in the
determination of 8, the obtained exponents considerably
differ from that of the well know irreversible poisoning
transition at Y, given by B*=0.58, i.e., the value corre-
sponding to the Reggeon field theory (RFT) universality
class [8]. This finding can be understood considering the
contributions to D given by V-4, V-B, and A4-B, as dis-
cussed above. Since close to Y. the coverage with A4
species is almost negligible [1], D is dominated by the
V-B term with critical exponent 8. On the other hand,
for the poisoning transition and close to Y,  the natural
order parameter is the concentration of minority species
0 4, which behaves as

0,=<(Y—Y, F . (8)

So, the contribution to the damage given by the term
V-A (A6 ,) should be proportional to 8, and, conse-
quently, it may be dominated by the same exponent [33].
To check this argument we have recorded the term V-4
separately (see Fig. 4), which is found to be governed by
the exponent B8*=0.578+0.010 [33], in excellent agree-
ment with the RFT value [8].

The fact that both transitions at the same critical

~ point, i.e., the frozen-chaotic and the poisoning-reactive

transitions, have different order parameter critical ex-
ponents strongly suggests that in the ZGB model, dam-
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FIG. 4. Plot of In(A8,) vs In(AY) [see Eq. (8)]. Results are
obtained using lattices of side L =150. Each point is averaged
within the interval 2X10°<¢=<5X 10’ and over 100 different

samples. The straight line with slope $=0.578+0.010 corre-
sponds to the best fit of the data.

age spreading introduces a new dynamic critical

phenomenon.

B. ZGBER model in two dimensions

Meakin [9] has reported simulations of the ZGB model
with the addition of the Eley-Rideal reaction step, given
by Eq. (4). The poisoned state with B species is not ob-
served (Y,,—0), and the first-order irreversible transi-
tion between the reactive regime and the poisoned state
with A species becomes shifted to Y, =0.4972.

It is found that for Y>Y, the damage is quickly
healed. So, as expected, the poisoned state belongs to the
frozen phase. For 0.05<Y <Y,. the damage spreads
and after roughly #=5X 10’ reaches a stationary value.
However, surprisingly, for ¥ =0.01 the damage becomes
healed. So, let us define the spreading critical point Y| to
be the Y value at which the frozen-chaotic transition take
place. Close to Y, we assume the following Ansatz:

D)=t dF(AY:t!/"), 9)

where AY=Y —Y,. For large ¢ the scaling function
should behave as F (x)OCxB; 8, v, and B are critical ex-
ponents. For AY >0 and ¢— o« one has that D(t) take

finite values independent of ¢, so D () < AY'g, and 3 =v8.
Note that D is the appropriate order parameter and B the
associated critical exponent [16]. For AY=0 and t — «
the damage should be healed according to a single
power-law decay and consequently a log-log plot of D (¢)
versus ¢t should give a straight line. On the other hand,
for AY <0 (AY >0) the curves should veer downward
and upward, respectively. This property will allow us to
determine both Y, and & quite accurately. In fact, Fig. 5
shows log-log plots of D(¢) versus ¢ obtained using

D(t)
7

FIG. 5. Log-log plot of D(¢) vs ¢t for the ZGBER model in
two dimensions. @, Y=0.05; 0, Y =0.02; and V, Y =0.01.

different Y values. Taking Y =0.05 one has that the
damage becomes almost stable for t—10* while taking
Y =0.01 the damage is healed. However, at Y =0.02 the
damage decrease according to a single power law, strong-
ly suggesting the validity of Eq. (9) with Y, =0.02. We
have checked that the asymptotic behavior of D (z) just at
Y, is independent of the initial distance between the start-
ing configurations, as is shown in Fig. 6. A least squares
fit of the data within the asymptotic regime (z > 10%)
gives 6==0.6510.02, where the error bars are evaluated
considering the different & values obtained for different s
values. The fact that the reactive-poisoning transition
and the frozen-chaotic transition occur at different criti-

10
a

10° 10
t
FIG. 6. Log-log plots of D(t) vs t for the ZGBER model in
two dimensions obtained at Y =Y, =0.02 and using different s
values; from top to bottom, s =0.10, s =0.05, s =0.02, and
s =0.01.
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cal values (Y,7#Y,.) indicates that damage spreading the
ZGBER model also introduces a new dynamic critical
phenomenon. It should be noted that the monomer-
monomer irreversible reaction process (MMP) with one
species desorption exhibits a similar behavior [24]. In
fact, the latter has a poisoning-reactive critical point at
Y, =0.5099 [34], while the frozen-chaotic transition takes
place close to Y, =0.745 [24].

Once Y, has been determined by evaluating the dam-
age healing kinetics, one can analyze the behavior of the
damage within the chaotic phase. A log-log plot of
D (t— o) versus AY (Fig. 7) confirms the validity of Eq.
(9) and a least squares fit of the data gives B=1.18+0.03
for the order parameter critical exponent. It should be
noted that for the MMP in two dimensions one has a
quite different exponent, e.g., 8=0.492+0.007 [24].

Also, for the sake of comparison, let us mention that in
the case of thermally driven reversible phase transitions it
has been reported that the spreading temperature of the
Ising model in three dimensions may be shifted about 3%
below the critical temperature [31], i.e., a small shift
when compared with those observed in both the ZGBER
model and the MMP.

In the limit Y =0 the ZGBER (and also the ZGB)
model corresponds to the well known random dimer
filling problem (RDFP) in two dimensions (for a review
see [35]). Under this condition a full coverage with B
species cannot be achieved and the final state of the sur-
face is jammed, the jamming coverage being 6,=0.907
[35]. It is clear that any initial damage created in the
jammed state cannot be healed and, consequently, for this
limiting value of Y the final damage will adopt a nonzero
value. So, we have also investigated the process of dam-
age healing for Y <0.01, i.e., the lowest Y value shown in
Fig. 5. Figure 8 shows plots of D(?) versus ¢, taking

-3 |

1072 107"

10
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FIG. 7. Log-log plot of D(t— ) vs AY [see Eq. (9)]. Re-
sults obtained using lattices of side L =100. Each point is aver-
aged within the interval 5X 10° <t <10* and over 100 different
samples. The straight line with slope f=1.184+0.03 corre-
sponds to the best fit of the data.
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FIG. 8. Log-log plot of D(t) vs t for the ZGBER model in
two dimensions. @, Y =0.001; and O, Y =0.0005.

Y =0.001 and Y =0.0005. On the one hand, one ob-
serves that now the damage healing process is slower for
the smaller Y value. On the other hand, it becomes evi-
dent that also the kinetics of damage healing is much
slower than for Y=0.01 (Fig. 5). So, the observed
behavior is consistent with the fact that for Y =0 one has
nonzero damage.

C. ZGBER model in one dimension

According to Meakin [9] the addition of the Eley-
Rideal reaction step, given by Eq. (4), to the ZGB model
in one dimension causes the occurrence of a finite-width
reaction window. In fact, the poisoned state with B
species is not observed (Y,.—0) and a continuous ir-

D(t)

1 1
6000 8000

t

FIG. 9. Plots of log{D(¢)} vs ¢ for the ZGBER model in one
dimension. ¥, Y=0.30; V, Y=0.10; and @, Y =0.01.

4000 10000
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reversible transition between the reactive regime and the
poisoned state with A4 species is found close to
Y,.=0.3058 [9].

It is found that the damage heals for Y >0, as is shown
for same typical Y values in Fig. 9. However, damage
healing requires more time when approach Y—0. In
fact, for Y =0.30 and 0.10 one has damage healing after
roughly ¢=1200 and 3400, respectively, while for
Y =0.01 the healing process still continues after ¢ =10*
(Fig. 9). This behavior can be understood in terms of the
same idea discussed for the ZGDER model in two dimen-
sions. That is, for Y =0 one has the RDFP in one dimen-
sion and the sample is jammed, the jamming coverage
with B species being 8, =1—e ~2 [35]. Therefore, also in
this case, one has nonzero damage for ¥ =0.

It is interesting to note that damage healing has also
been observed within the reactive regime of the
monomer-monomer reaction process with one species
desorption in one dimension [24]. This result, together
with the above discussed behavior of the ZGBER model,
may suggest that damage spreading cannot take place
within the reactive regime of irreversible reaction system
in one dimension. Preliminary results for the 4 model
(BK model), as defined, e.g., in Refs. [36] and [37], re-
spectively, are in agreement with the above conjecture.

IV. CONCLUSIONS

The spreading of damage is studied in the ZGB and the
ZGBER models in one and two dimensions. For the

ZGB model in two dimensions, damage spreading (heal-
ing) is observed within the reactive regime and poisoned
states, respectively. Frozen-chaotic transitions occur at
the same critical points as transitions between the reac-
tive regime and the poisoned states. However, the order
parameter critical exponents of the second-order transi-
tions are different, pointing out the occurrence of
different critical behavior. For the ZGBER model in two
dimensions, the frozen-chaotic transition occurs well in-
side the reactive regime at ¥, =0.02 < Y,,=0.4972. Just
at Y, the damage heals according to a single power-law
behavior with exponent §=<0.65+0.02. The order pa-
rameter critical exponent is found to be B=1.18+0.03.
The absence of damage spreading in the ZGBER model
in one dimension, as well as in other reaction processes in
one dimension, leads us to conjecture that this is a com-
mon feature characteristic of their reactive regime in one
dimension. Further studies aimed at determining the
upper critical dimension for damage spreading in single
and multicomponent reaction system are in progress.
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